

Who we are

Seiler Instrument Company is a family owned firm established in 1945. We have offices throughout the Midwest with our corporate headquarters located in St. Louis, Missouri.

Our experienced industry leaders provide customers innovative solutions and knowledgeable support. Working with a variety of manufacturers, we provide value added solutions for Engineering, Architecture, Surveying, Construction, Rail, Fleet Management, Government, Utilities, and GIS markets.

We are committed to supporting our clients and are passionate about understanding your needs, challenges, and current technology goals.

Unmanned Aerial Systems Salina Seminar Series

•Seiler Instrument •Travis LeMoine •January 7 & 8, 2016

Airframes and Innovations

- Early fixed-wing airframes were typically all balsa wood with wings covered by film/ fabric
- EPP foam and other types of foam are now used as an extremely lightweight and durable alternative
- Development of Multi-rotors (accompanied by miniaturization of gyros & accelerometers)

Power Systems

- Early systems were petroleum based
- Initial electric motors were brushed to be recently replaced by brushless
- Nickel batteries replaced by Lithium

Autonomy & Flight Control

- Thermopiles, Gyro stabilization
- Open Source: ArduPilot, OpenPilot, KK, MultiWii, etc.
- Open Source Add-On: 3D Robotics Pixhawk
- Proprietary (DJI Naza, Mikrokopter, Micropilot, etc.)

Lidar

- First airborne in '80s with introduction of GPS
- Accuracy improved in '90s with use of IMUs
- Current sensors are quite a bit smaller, but still not perfect for UAS

Target Markets

- Engineering & Surveying
- Mining
- Civil & Heavy Earthworks Construction
- Oil & Gas
- Environmental & Landfill
- Public Agencies
- Agriculture & Forestry

Targe	t Aj	opli	cat	ion	S					
	Boundary Surveys	Topographic Surveys	Site Planning	Route Planning	Progress Monitoring	As-Builts	Resource Mapping	Volume Calculation	Disaster Analysis	Vegetation Health
Engineering & Surveying	\checkmark	\checkmark			\checkmark			\checkmark		
Mining	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		
Civil & Heavy Earthworks Construction	✓	\checkmark	~		\checkmark					
Oil & Gas	✓	✓	✓	✓	\checkmark	\checkmark	\checkmark	✓		
Environmental & Landfill	\checkmark	\checkmark	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Public Agencies	✓	\checkmark	✓	\checkmark	\checkmark		\checkmark		\checkmark	\checkmark
Agriculture & Forestry	✓		✓		\checkmark		\checkmark		\checkmark	\checkmark
								r (SE	ILEF

Boundary Surveys • Large area to be surveyed • Up to 7.5 km ² coverage per flight • Reduced time & cost to collect data Numerous interests to be mapped (roads, structures, fences, etc.) • Scaled, geo-referenced orthophotos created • Accurate and current representation of the land use and features Image: Topographic Surveys • Slow data collection • Up to 7.5 km ² coverage per flight • Reduced time & cost to collect data Image: Topographic Surveys • Slow data collection • Up to 7.5 km ² coverage per flight • Reduced time & cost to collect data Image: Topographic Surveys • Typically low or inconsistent density of measurements • Scaled, geo-referenced orthophotos and surface • More accurate representation of topography • Numerous interests to be mapped (roads, structures, fences, etc.) • Scaled, geo-referenced orthophotos and surface • Accurate and current representation of the terrain. land use and		Problem	UAS Feature	Benefit
Surveys • Numerous interests to be mapped (roads, structures, fences, etc.) • Scaled, geo-referenced orthophotos created • Accurate and current representation of the land use and features Topographic Surveys • Slow data collection • Up to 7.5 km² coverage per flight • Reduced time & cost to collect data * Typically low or inconsistent density of measurements • Fixed ground sampling of measurements down to 2.4 cm • More accurate representation of topography • Numerous interests to be mapped (roads, structures, fences, etc.) • Scaled, geo-referenced orthophotos and surface models created • Accurate and current representation of topography	Boundary	 Large area to be surveyed 	Up to 7.5 km ² coverage per flight	Reduced time & cost to collect data
Topographic Surveys • Slow data collection • Up to 7.5 km² coverage per flight • Reduced time & cost to collect data • Typically low or inconsistent density of measurements • Fixed ground sampling of measurements down to 2.4 cm • More accurate representation of topography • Numerous interests to be mapped (roads, structures, fences, etc.) • Scaled, geo-referenced orthophotos and surface models created • Accurate and current representation of the terrain, land use and	Surveys	 Numerous interests to be mapped (roads, structures, fences, etc.) 	Scaled, geo-referenced orthophotos created	 Accurate and current representation of the land use and features
Topographic Surveys • Typically low or inconsistent density of measurements • Fixed ground sampling of measurements down to 2.4 cm • More accurate representation of topography • Numerous interests to be mapped (roads, structures, fences, etc.) • Scaled, geo-referenced orthophotos and surface models created • Accurate and current representation of the terrain, land use and		Slow data collection	Up to 7.5 km ² coverage per flight	Reduced time & cost to collect data
Numerous interests to be mapped (roads, structures, fences, etc.) Scaled, geo-referenced orthophotos and surface models created Accurate and current representation of the terrain, land use and	Topographic Surveys	Typically low or inconsistent density of measurements	 Fixed ground sampling of measurements down to 2.4 cm 	 More accurate representation of topography
features	·	Numerous interests to be mapped (roads, structures, fences, etc.)	Scaled, geo-referenced orthophotos and surface models created	Accurate and current representation of the terrain, land use and features
				SEILE

	Problem	UAS Feature	Benefit
Site Planning	 Numerous interests to be mapped (access roads, drill rig pads, structures, drainage areas, etc.) 	 Scaled, geo-referenced orthophotos and surface models created 	 Reduced time & cost to collect data and generate feature maps
	Availability of accurately geo-referenced imagery	Scaled, geo-referenced orthophotos created	Accurate and current representation of the land use and features
	Large area to be surveyed	Up to 7.5 km ² coverage per flight	Reduced time & cost to collect data
Route Planning	 Numerous interests to be mapped (roads, structures, fences, etc.) 	Scaled, geo-referenced orthophotos created	Accurate and current representation of the land use and features
	Availability of accurately geo-referenced imagery	Scaled, geo-referenced orthophotos created	 Accurate and current representation of the land use and features

	Problem	UAS Feature	Benefit
	Lack of current overview view of site	Scaled, geo-referenced orthophotos created	 Easy to visualized and understand progress by all stakeholders
Progress Monitoring	Possibility of leaving the site with incomplete measurements	"Over-flight" ensures the entire site is measured	Eliminate the time & costs associated wit having to send a crew out to fill-in missing measurement
	Traditional methods often interrupt site operations	 Remote sensing measurements keep operators away from job activity 	 Delays in site productivity can lead to unplanned costs and schedule delays

П

	Problem	UAS Feature	Benefit
	Large area to be surveyed	Up to 7.5 km ² coverage per flight	Reduced time & cost to collect data
	Typically low or inconsistent density of measurements	 Fixed ground sampling of measurements down to 2.4 cm 	 More accurate representation of topography
Volume	Slow data collection	Up to 7.5 km ² coverage per flight	Reduced time & cost to collect data
Calculation	 Individuals often work in hazardous conditions (terrain, vehicles, equipment, etc.) 	Remote sensing measurements keep operators in safe locations	 Reduce the potential for unforeseen costs and delays
	Traditional methods often interrupt site operations	 Remote sensing measurements keep operators away from job activity 	 Delays in site productivity can lead to unplanned costs and schedule delays

	Problem	UAS Feature	Benefit
	Large area to be surveyed	Up to 7.5 km ² coverage per flight	Reduced time & cost to collect data
Resource Mapping	 Numerous interests to be mapped (roads, structures, fences, etc.) 	 Scaled, geo-referenced orthophotos created 	 Accurate and current representation of the land use and features
	Lack of overview view of area of interest	Scaled, geo-referenced orthophotos created	Easy to visualized and understand land utilization
	 Numerous interests to be mapped (roads, structures, fences, etc.) 	Scaled, geo-referenced orthophotos created	Accurate and current representation of the land use and features
As-Builts	Typically low or inconsistent density of measurements	 Fixed ground sampling of measurements down to 2.4 cm 	 More accurate representation of topography
	Slow data collection	 Up to 7.5 km² coverage per flight 	Reduced time & cost to collect data

UAS Aerial Imaging Benefi	ts
----------------------------------	----

	Problem	UAS Feature	Benefit
	Large area to be surveyed	Up to 7.5 km ² coverage per flight	Reduced time & cost to collect data
	 Numerous interests to be mapped (roads, structures, fences, etc.) 	Scaled, geo-referenced orthophotos created	 Accurate and current representation of the land use and features
Disaster Analysis	Lack of current overview view of site	Scaled, geo-referenced orthophotos created	 Easy to visualized and understand progress by all stakeholders
	Individuals often work in hazardous conditions (terrain, downed powerlines, standing water, etc.)	Remote sensing measurements keep operators in safe locations	Reduce the potential for unforeseen costs and delays

UAS Aerial Imaging Benefits Problem **UAS Feature** Benefit Reduced time & cost to • Up to 7.5 km² coverage · Large area to be ٠ surveyed collect data per flight Traditional survey NIR camera provides · Clear understanding of Vegetation Health technologies to not offer visual indication of health of vegetation to the ability to determine different types and make the appropriate health of vegetation health of vegetation decisions for operations

	UAS	GNSS	Comments
Area	1.5 km ²	1.5 km ²	
Ground control setup & measurement	1 ¼ hr		Ground control not required for all applications
Setup time	15 min	15 min (per day)	
Survey time	45 min	30 ½ hr (4 days)	
Tear-down time	15 min	15 min (per day)	
Data processing time	4 hrs (2.80 GHz Intel Core i7, 16 GB RAM)		Data can be processed overnight
Total time	6 hr 30 min	32 hr 30 min	5x faster than GNSS
Measurement sampling	3.8 cm (at 120 m flight altitude)	15 m	Minimum sampling size is 2.4 cm
Horizontal accuracy	2 cm	1 cm	
Vertical accuracy	4 cm	2 cm	

Different Solutions for Different Applications Fixed Wing Solutions - Larger open areas - Horizontal mapping - Efficient data capture - High Speed, Long Battery Life - Typically require site specific FAA approval (COA) VTOL (vertical take-off) Multirotor Solutions - Smaller obstructed areas - Horizontal or Vertical - Visual Inspections - Slower Speed, Shorter Battery Life - More likely to use blanket approval (COA) SEILEF

Image Sensors & Megapixels

- Both are important!
- More megapixels means each pixel represents a smaller space of the image (resolution)
- Larger image sensors result in more space for each pixel to receive light (pixel density)
 - Lower pixel density results in less noise in the image, deeper colors & faster shutter speeds which means the UAV can fly in poorer conditions (higher wind speeds, lower light)

SEILER

Fixed, immobile lens & autofocus

- Important in photogrammetry
 - Power-on lens movement is almost always inconsistent resulting in very small, yet significant changes in focal length
 - UAS reaction to wind can apply small forces in gravity to the camera resulting in small changes to the focal length in non-fixed lenses
 - Autofocus can delay the capture of imagery resulting in lower than intended overlap which reduces overall model accuracy
 - Lens distortion creates warping of data without GCPs

<section-header><section-header><list-item><list-item>

<text><list-item><list-item><list-item><list-item>

Lidar

- Ability to fire through vegetation is very beneficial
- LiDAR sensors have become small enough for UAS
 Though still not "lightweight"
- Cost & accuracy are improving
- Biggest drawback (for now) is accuracy
 - Most inaccuracy comes in heading accuracy as there is no GNSS Azimuth Measurement System (GAMS)

Trimble Access Aerial Imaging Application

- Mission planning
 - Create background map and add optional layers
 - Define mission area and avoidance zones
 - Define GSD, height and overlap
 - In the office or in the field
- Flight planning
 - Calculate and plan multiple flights for a mission
 - Define wind direction, takeoff location, and landing location
 - In the field
- Flight monitoring
 - Monitor the flight
 - Trigger emergency actions when needed
 - In the field
- Analysis
 - Check completeness of data
 - In the office or in the field

Flight Monitoring

- Flight is controlled by the autopilot system
 - Based on the mission & flight plan from Trimble Access Aerial Imaging application
- Flight parameters & performance displayed
 - Virtual horizon
 - GPS lock
 - Communication link strength
 - Battery level
 - Aircraft height & speed (actual & planned)
 - Aircraft location & flight lines (on map)
- Manual evasive maneuvers available (if necessary)
- Landing confirmation

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><table-container>

UX5 Can	UX5 Camera Sensor Size									
Co	mn	non	Se	ensc	or S	izes				
	-	-								
Sensor Type	1/2.5"	1/1.8"	2/3"	4/3"	APS-C	35mm				
Aspect Ratio	4:3	4:3	4:3	4:3	2:3	2:3				
Diagonal (mm)	7.2	8.9	Ш	22.5	27.3	43.3				
Width (mm)	5.8	7.2	8.8	18	22.7	36				
Height (mm)	4.3	5.3	6.6	13.5	15.1	24				
						r (Fs	EILER			

Section 333 Corr	npliance	 Monthly Reporting 	ŋg
UAS Civil COA - Monthly Operational Report Form			
Due within 5 business days after end of reporting month			
Monthly Operational Repo	ort Form		
Month/Year:* (mm/yyyy)	12/2015		
COA #:* (2015-ESA-11064-1-333E)	2015-CSA-12663-541-333E	Pre-Populate	
Proponent:*	Seiler Instrument		
Type Aircraft:* (Make / Model / Series)	Trimble Navigation UX5 / Trimble Na	vigation UX5	
Aircraft Registration #:*	N531LR	Number and duration of Loss of Communication (with either observer or	0
Total Number of Flights Conducted:* (A flight during which any portion is conducted in the MAS must be counted only once, regardless of how many times it may enter and leave special use airspace between takeoff and landing.)	3	ATC) and Lost Link Events:* List the date, event type and duration for each event; for example: 09/13/2011; Lost Link; Janin 45sec 09/12/2011; Lost Link; Janin 11sec 09/12/2011; Loss of ATC comm; 44sec	U
Total Aircraft Operational Hours:* (Expressed in hours and tenths of hours.)	1.1	Total # of Equipment Malfunctions:* (Hardware/software affecting either the aircraft or the ground control station.)	0
Total Ground Control Station Operational Hours:* (Include LRE operations. Expressed in hours and tenths of hours.)	1.6	Describe any other Operational / Coordination issues:*	None
For Each Flight: Date, Flight Number (for that day), Aircraft Operational Hours, GCS Operational Hours and Pilot Duty Time per PIC: ⁴ 09/13/2011:	12/02/15: Fit. 1; .3hrs; .3hrs PIC Fit. 2; .3hrs; .3hrs PIC 12/10/15:		
FIL 27 4.0ftrs; 5.0ftrs; 0.6ftrs; PIC1, 1.5ftrs PIC2 FIL 27 4.0ftrs; 5.0ftrs; 1.8ftrs; PIC1, 2.7ftrs; PIC2 FIL 37 6.0ftrs; 7.0ftrs; 2.8ftrs; PIC1, 3.7ftrs; PIC2	Flt. 1; .5 hrs; .5hrs PIC	Email Monthly Operational Cance	Reset
Total # of Deviations from ATC instructions and/or Letters of Agreement / <u>Procedures</u> :*	0		
		GEUSPATIAL DIVI	50

